Robocentric map joining: Improving the consistency of EKF-SLAM
نویسندگان
چکیده
In this paper1 we study the Extended Kalman Filter approach to simultaneous localization and mapping (EKF-SLAM), describing its known properties and limitations, and concentrate on the filter consistency issue. We show that linearization of the inherent nonlinearities of both the vehicle motion and the sensor models frequently drives the solution of the EKF-SLAM out of consistency, specially in those situations where uncertainty surpasses a certain threshold. We propose a mapping algorithm, Robocentric Map Joining, which improves consistency of the EKFSLAM algorithm by limiting the level of uncertainty in the continuous evolution of the stochastic map: (1) by building a sequence of independent local maps, and (2) by using a robot centered representation of each local map. Simulations and a large-scale indoor/outdoor experiment validate the proposed approach. c © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Limits to the Consistency of Ekf-based Slam
This paper analyzes the consistency of the classical extended Kalman filter (EKF) solution to the simultaneous localization and map building (SLAM) problem. Our results show that in large environments the map quickly becomes inconsistent due to linearization errors. We propose a new EKF-based SLAM algorithm, robocentric mapping, that greatly reduces linearization errors, improving map consisten...
متن کاملIterated D-SLAM map joining: evaluating its performance in terms of consistency, accuracy and efficiency
This paper presents a new map joining algorithm and a set of metrics for evaluating the performance of mapping techniques. The input to the new map joining algorithm is a sequence of local maps containing the feature positions and the final robot pose in a local frame of reference. The output is a global map containing the global positions of all the features but without any robot poses. The al...
متن کاملEKF SLAM is O(n)
In this paper we show that all processes associated to the move-sense-update cycle of EKF SLAM can be carried out in time linear in the number of map features. We describe Divide and Conquer SLAM, an EKF SLAM algorithm where the computational complexity per step is reduced from O(n) to O(n) (the total cost of SLAM is reduced from O(n) to O(n)). In addition, the resulting vehicle and map estimat...
متن کاملIterated SLSJF: A Sparse Local Submap Joining Algorithm with Improved Consistency
This paper presents a new local submap joining algorithm for building large-scale feature based maps. The algorithm is based on the recently developed Sparse Local Submap Joining Filter (SLSJF) and uses multiple iterations to improve the estimate and hence is called Iterated SLSJF (I-SLSJF). The input to the I-SLSJF algorithm is a sequence of local submaps. The output of the algorithm is a glob...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 55 شماره
صفحات -
تاریخ انتشار 2007